Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study.

نویسندگان

  • Matthias L Schroeter
  • Thomas Kupka
  • Toralf Mildner
  • Kâmil Uludağ
  • D Yves von Cramon
چکیده

Measuring the hemodynamic response with functional magnetic resonance imaging (fMRI) together with functional near-infrared spectroscopy (fNIRS) may overcome limitations of single-method approaches. Accordingly, we measured the event-related hemodynamic response with both imaging methods simultaneously in young subjects during visual stimulation. An intertrial interval of 60 s was chosen to include the prolonged post-stimulus undershoot of the blood oxygenation level dependent (BOLD) signal. During visual stimulation, the BOLD signal, oxy-, and total hemoglobin (Hb) increased, whereas deoxy-Hb decreased. The post-stimulus period was characterized by an undershoot of the BOLD signal, oxy-Hb, and an overshoot of deoxy-Hb. Total Hb as measured by fNIRS returned to baseline immediately after the end of stimulation. Results suggest that the post-stimulus events as measured by fNIRS are dominated by a prolonged high-level oxygen consumption in the microvasculature. The contribution of a delayed return of blood volume to the BOLD post-stimulus undershoot in post-capillary veins as suggested by the Balloon and Windkessel models remains ambiguous. Temporal changes in the BOLD signal were highly correlated with deoxy-Hb, with lower correlation values for oxy- and total Hb. Furthermore, data show that fNIRS covers the outer 1 cm of the brain cortex. These results were confirmed by simultaneous fMRI/fNIRS measurements during rest. In conclusion, multimodal imaging approaches may contribute to the understanding of neurovascular coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD.

The negative blood oxygenation level-dependent (BOLD) signal following the cessation of stimulation (post-stimulus BOLD undershoot) is observed in functional magnetic resonance imaging (fMRI) studies. However, its spatial characteristics are unknown. To investigate this, gradient-echo BOLD fMRI in response to visual stimulus was obtained in isoflurane-anesthetized cats at 9.4 T. Since the middl...

متن کامل

Origins of the BOLD post-stimulus undershoot

The interpretation of the blood-oxygenation level-dependent (BOLD) post-stimulus undershoot has been a topic of considerable interest, as the mechanisms behind this prominent BOLD transient may provide valuable clues on the neurovascular response process and energy supply routes of the brain. Biomechanical theories explain the origin of the BOLD undershoot through the passive ballooning of post...

متن کامل

Hemodynamic responses following brief breath-holding and visual stimulation reconcile the vascular compliance and sustained oxygen metabolism origins for the BOLD post-stimulus undershoot in human brain

Introduction: The well-known BOLD post-stimulus undershoot has been attributed to two possible origins: (i) delayed vascular compliance based on delayed cerebral blood volume (CBV) recovery (1,2) or undershoot in cerebral blood flow (CBF) (3) with recovery of oxygen metabolism; (ii) sustained oxygen metabolism with speedy CBV and CBF recovery after stimulus cessation (4,5). Recently, high-resol...

متن کامل

Differentiating Sensitivity of Post-Stimulus Undershoot under Diffusion Weighting: Implication of Vascular and Neuronal Hierarchy

The widely used blood oxygenation level dependent (BOLD) signal during brain activation, as measured in typical fMRI methods, is composed of several distinct phases, the last of which, and perhaps the least understood, is the post-stimulus undershoot. Although this undershoot has been consistently observed, its hemodynamic and metabolic sources are still under debate, as evidences for sustained...

متن کامل

The triphasic intrinsic signal: implications for functional imaging.

Intrinsic signal optical imaging with red illumination (ISOI) is used extensively to provide high spatial resolution maps of stimulus-evoked hemodynamic-related signals as an indirect means to map evoked neuronal activity. This evoked signal is generally described as beginning with an undershoot or "dip" in signal that is faster, more transient, and weaker compared with the subsequent signal ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 30 2  شماره 

صفحات  -

تاریخ انتشار 2006